6 research outputs found

    In Vitro–expanded Antigen-specific Regulatory T Cells Suppress Autoimmune Diabetes

    Get PDF
    The low number of CD4+ CD25+ regulatory T cells (Tregs), their anergic phenotype, and diverse antigen specificity present major challenges to harnessing this potent tolerogenic population to treat autoimmunity and transplant rejection. In this study, we describe a robust method to expand antigen-specific Tregs from autoimmune-prone nonobese diabetic mice. Purified CD4+ CD25+ Tregs were expanded up to 200-fold in less than 2 wk in vitro using a combination of anti-CD3, anti-CD28, and interleukin 2. The expanded Tregs express a classical cell surface phenotype and function both in vitro and in vivo to suppress effector T cell functions. Most significantly, small numbers of antigen-specific Tregs can reverse diabetes after disease onset, suggesting a novel approach to cellular immunotherapy for autoimmunity

    Controlled induction of human pancreatic progenitors produces functional beta‐like cells in vitro

    Full text link
    Directed differentiation of human pluripotent stem cells into functional insulin‐producing beta‐like cells holds great promise for cell replacement therapy for patients suffering from diabetes. This approach also offers the unique opportunity to study otherwise inaccessible aspects of human beta cell development and function in vitro. Here, we show that current pancreatic progenitor differentiation protocols promote precocious endocrine commitment, ultimately resulting in the generation of non‐functional polyhormonal cells. Omission of commonly used BMP inhibitors during pancreatic specification prevents precocious endocrine formation while treatment with retinoic acid followed by combined EGF/KGF efficiently generates both PDX1+ and subsequent PDX1+/NKX6.1+ pancreatic progenitor populations, respectively. Precise temporal activation of endocrine differentiation in PDX1+/NKX6.1+ progenitors produces glucose‐responsive beta‐like cells in vitro that exhibit key features of bona fide human beta cells, remain functional after short‐term transplantation, and reduce blood glucose levels in diabetic mice. Thus, our simplified and scalable system accurately recapitulates key steps of human pancreas development and provides a fast and reproducible supply of functional human beta‐like cells.SynopsisFocusing on developmental mechanisms, the results of this study further accelerate successful differentiation of human ESCs into functional pancreatic beta cells.Exclusion of commonly used BMP inhibitors during human embryonic stem cell to pancreatic progenitor differentiation prevents precocious endocrine induction.Sequential exposure of foregut cells to retinoic acid followed by combined EGF/KGF treatment establishes highly pure PDX1+ and PDX1+/NKX6.1+ progenitor populations, respectively.Precise temporal induction of endocrine differentiation in PDX1+/NKX6.1+ progenitors, but not in PDX1+/NKX6.1− progenitors, results in the generation of functional beta‐like cells in vitro.Beta‐like cells exhibit key features of bona fide human beta cells, remain functional after short‐term transplantation, and reduce blood glucose levels in diabetic mice.Focusing on developmental mechanisms, the results of this study further accelerate successful differentiation of human ESCs into functional pancreatic beta cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111932/1/embj201591058.reviewer_comments.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/111932/2/embj201591058.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/111932/3/embj201591058-sup-0001-FigsS1-S4.pd
    corecore